skip to content

Energy

Interdisciplinary Research Centre
 

This magnetic breakthrough could make AI 10x more efficient

A groundbreaking step in AI hardware efficiency comes from Germany, where scientists have engineered a vast spin waveguide network that processes information with far less energy. These spin waves quantum ripples in magnetic materials offer a promising alternative to power-hungry electronics.

Narine Lalafaryan gives evidence before the House of Lords

Latest news from Faculty of Law - Thu, 10/07/2025 - 14:24

Dr Narine Lalafaryan (Assistant Professor of Corporate Law; Fellow, Pembroke College; CERF Fellow) gave evidence on 9 July 2025 to the House of Lords, Financial Services Regulation Committee . The Financial Services Regulation Committee invited Dr Lalafaryan to provide evidence on the growth of private markets in the UK...

Forget 3D printing—DNA and water now build tiny machines that assemble themselves

Imagine if you could "print" a tiny skyscraper using DNA instead of steel. That’s what researchers at Columbia and Brookhaven are doing—constructing intricate 3D nanostructures by harnessing the predictable folding of DNA strands. Their new design method uses voxel-like building blocks and an algorithm called MOSES to fabricate nanoscale devices in parallel, with applications ranging from optical computing to bio-scaffolds. Unlike traditional lithography or 3D printing, this self-assembly process occurs entirely in water and could revolutionize the future of nanomanufacturing.

Banking on AI risks derailing net zero goals: report on energy costs of Big Tech

By 2040, the energy demands of the tech industry could be up to 25 times higher than today, with unchecked growth of data centres driven by AI expected to create surges in electricity consumption that will strain power grids and accelerate carbon emissions.  

This is according to a new report from the University of Cambridge’s Minderoo Centre for Technology and Democracy, which suggests that even the most conservative estimate for big tech’s energy needs will see a five-fold increase over the next 15 years. 

The idea that governments such as the UK can become leaders in AI while simultaneously meeting their net zero targets amounts to “magical thinking at the highest levels,” according to the report’s authors. The UK is committed to net zero greenhouse gas emissions by 2050.

Researchers call for global standards in reporting AI’s environmental cost through forums such as COP, the UN climate summit, and argue that the UK should advocate for this on the international stage while ensuring democratic oversight at home.

The report, published today, synthesises projections from leading consultancies to forecast the energy demands of the global tech industry. The researchers note that these projections are based on claims by tech firms themselves. 

At the moment, data centres – the facilities that house servers for processing and storing data, along with cooling systems preventing this hardware from overheating – account for nearly 1.5% of global emissions.

This figure is expected to grow by 15-30% each year to reach 8% of total global greenhouse gas emissions by 2040, write the report’s authors. They point out that this would far exceed current emissions from air travel. 

The report highlights that in the US, China, and Europe, data centres already consume around 2-4% of national electricity, with regional concentrations becoming extreme. For example, up to 20% of all power in Ireland now goes to data centres in Dublin’s cluster.

“We know the environmental impact of AI will be formidable, but tech giants are deliberately vague about the energy requirements implicit in their aims,” said Bhargav Srinivasa Desikan, the report’s lead author from Cambridge’s Minderoo Centre.

“The lack of hard data on electricity and water consumption as well as associated carbon emissions of digital technology leaves policymakers and researchers in the dark about the climate harms AI might cause.”

“We need to see urgent action from governments to prevent AI from derailing climate goals, not just deferring to tech companies on the promise of economic growth,” said Desikan.

The researchers also use data from corporate press releases and ESG reports of some of the world’s tech giants to show the alarming trajectory of energy use before the AI race had fully kicked into gear.

Google’s reported greenhouse gas emissions rose by 48% between 2019 and 2023, while Microsoft’s reported emissions increased by nearly 30% from 2020 to 2023. Amazon’s carbon footprint grew around 40% between 2019 and 2021, and – while it has begun to fall – remains well above 2019 levels.

This self-reported data is contested, note the researchers, and some independent reporting suggests that actual emissions from tech companies are much higher.  

Several tech giants are looking to nuclear power to defuse the energy timebomb at the heart of their ambitions. Sam Altman, CEO of OpenAI, has argued that fusion is needed to meet AI’s potential, while Meta have said that nuclear energy can “provide firm, baseload power” to supply their data centres.

Microsoft have even signed a 20-year agreement to reactivate the Three Mile Island plant – site of the worst nuclear accident in US history.

Some tech leaders, such as former Google CEO Eric Schmidt, argue that environmental costs of AI will be offset by its benefits for the climate crisis – from contributing to scientific breakthroughs in green energy to enhanced climate change modelling.

“Despite the rapacious energy demands of AI, tech companies encourage governments to see these technologies as accelerators for the green transition,” said Prof Gina Neff, Executive Director of the Minderoo Centre for Technology and Democracy.

“These claims appeal to governments banking on AI to grow the economy, but they may compromise society's climate commitments.”

“Big Tech is blowing past their own climate goals, while they rely heavily on renewable energy certificates and carbon offsets rather than reducing their emissions,” said Prof Neff.

“Generative AI may be helpful for designing climate solutions, but there is a real risk that emissions from the AI build-out will outstrip any climate gains as tech companies abandon net zero goals and pursue huge AI-driven profits.”

The report calls for the UK’s environmental policies to be updated for the “AI era”. Recommendations include adding AI’s energy footprint into national decarbonisation plans, with specific carbon reduction targets for data centres and AI services, and requirements for detailed reporting of energy and water consumption.  

Ofgem should set strict energy efficiency targets for data centres, write the report’s authors, while the Department for Energy Security and Net Zero and the Department for Science, Innovation and Technology should tie AI research funding and data centre operations to clean power adoption.

The report’s authors note that that UK’s new AI Energy Council currently consists entirely of energy bodies and tech companies – with no representation for communities, climate groups or civil society.  

“Energy grids are already stretched,” said Prof John Naughton, Chair of the Advisory Board at the Minderoo Centre for Technology and Democracy.

“Every megawatt allocated to AI data centres will be a megawatt unavailable for housing or manufacturing. Governments need to be straight with the public about the inevitable energy trade-offs that will come with doubling down on AI as an engine of economic growth.”
 

With countries such as the UK declaring ambitious goals for both AI leadership and decarbonisation, a new report suggests that AI could drive a 25-fold increase in the global tech sector’s energy use by 2040.

halbergman/Getty Technicians walking through a vast data centre for AI and cloud computing in the US


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Banking on AI risks derailing net zero goals: report on energy costs of Big Tech

Cambridge Energy News - Thu, 10/07/2025 - 08:07

By 2040, the energy demands of the tech industry could be up to 25 times higher than today, with unchecked growth of data centres driven by AI expected to create surges in electricity consumption that will strain power grids and accelerate carbon emissions.  

This is according to a new report from the University of Cambridge’s Minderoo Centre for Technology and Democracy, which suggests that even the most conservative estimate for big tech’s energy needs will see a five-fold increase over the next 15 years. 

The idea that governments such as the UK can become leaders in AI while simultaneously meeting their net zero targets amounts to “magical thinking at the highest levels,” according to the report’s authors. The UK is committed to net zero greenhouse gas emissions by 2050.

Researchers call for global standards in reporting AI’s environmental cost through forums such as COP, the UN climate summit, and argue that the UK should advocate for this on the international stage while ensuring democratic oversight at home.

The report, published today, synthesises projections from leading consultancies to forecast the energy demands of the global tech industry. The researchers note that these projections are based on claims by tech firms themselves. 

At the moment, data centres – the facilities that house servers for processing and storing data, along with cooling systems preventing this hardware from overheating – account for nearly 1.5% of global emissions.

This figure is expected to grow by 15-30% each year to reach 8% of total global greenhouse gas emissions by 2040, write the report’s authors. They point out that this would far exceed current emissions from air travel. 

The report highlights that in the US, China, and Europe, data centres already consume around 2-4% of national electricity, with regional concentrations becoming extreme. For example, up to 20% of all power in Ireland now goes to data centres in Dublin’s cluster.

“We know the environmental impact of AI will be formidable, but tech giants are deliberately vague about the energy requirements implicit in their aims,” said Bhargav Srinivasa Desikan, the report’s lead author from Cambridge’s Minderoo Centre.

“The lack of hard data on electricity and water consumption as well as associated carbon emissions of digital technology leaves policymakers and researchers in the dark about the climate harms AI might cause.”

“We need to see urgent action from governments to prevent AI from derailing climate goals, not just deferring to tech companies on the promise of economic growth,” said Desikan.

The researchers also use data from corporate press releases and ESG reports of some of the world’s tech giants to show the alarming trajectory of energy use before the AI race had fully kicked into gear.

Google’s reported greenhouse gas emissions rose by 48% between 2019 and 2023, while Microsoft’s reported emissions increased by nearly 30% from 2020 to 2023. Amazon’s carbon footprint grew around 40% between 2019 and 2021, and – while it has begun to fall – remains well above 2019 levels.

This self-reported data is contested, note the researchers, and some independent reporting suggests that actual emissions from tech companies are much higher.  

Several tech giants are looking to nuclear power to defuse the energy timebomb at the heart of their ambitions. Sam Altman, CEO of OpenAI, has argued that fusion is needed to meet AI’s potential, while Meta have said that nuclear energy can “provide firm, baseload power” to supply their data centres.

Microsoft have even signed a 20-year agreement to reactivate the Three Mile Island plant – site of the worst nuclear accident in US history.

Some tech leaders, such as former Google CEO Eric Schmidt, argue that environmental costs of AI will be offset by its benefits for the climate crisis – from contributing to scientific breakthroughs in green energy to enhanced climate change modelling.

“Despite the rapacious energy demands of AI, tech companies encourage governments to see these technologies as accelerators for the green transition,” said Prof Gina Neff, Executive Director of the Minderoo Centre for Technology and Democracy.

“These claims appeal to governments banking on AI to grow the economy, but they may compromise society's climate commitments.”

“Big Tech is blowing past their own climate goals, while they rely heavily on renewable energy certificates and carbon offsets rather than reducing their emissions,” said Prof Neff.

“Generative AI may be helpful for designing climate solutions, but there is a real risk that emissions from the AI build-out will outstrip any climate gains as tech companies abandon net zero goals and pursue huge AI-driven profits.”

The report calls for the UK’s environmental policies to be updated for the “AI era”. Recommendations include adding AI’s energy footprint into national decarbonisation plans, with specific carbon reduction targets for data centres and AI services, and requirements for detailed reporting of energy and water consumption.  

Ofgem should set strict energy efficiency targets for data centres, write the report’s authors, while the Department for Energy Security and Net Zero and the Department for Science, Innovation and Technology should tie AI research funding and data centre operations to clean power adoption.

The report’s authors note that that UK’s new AI Energy Council currently consists entirely of energy bodies and tech companies – with no representation for communities, climate groups or civil society.  

“Energy grids are already stretched,” said Prof John Naughton, Chair of the Advisory Board at the Minderoo Centre for Technology and Democracy.

“Every megawatt allocated to AI data centres will be a megawatt unavailable for housing or manufacturing. Governments need to be straight with the public about the inevitable energy trade-offs that will come with doubling down on AI as an engine of economic growth.”
 

With countries such as the UK declaring ambitious goals for both AI leadership and decarbonisation, a new report suggests that AI could drive a 25-fold increase in the global tech sector’s energy use by 2040.

halbergman/Getty Technicians walking through a vast data centre for AI and cloud computing in the US


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Lasers capture the invisible dance of wind and waves

A laser-equipped research platform has, for the first time, photographed airflow just millimeters above ocean waves, revealing two simultaneous wind–wave energy-transfer tricks—slow short waves steal power from the breeze, while long giants sculpt the air in reverse. These crisp observations promise to overhaul climate and weather models by clarifying how heat, momentum, and greenhouse gases slip between sea and sky.

Scientists just recreated a 1938 experiment that could rewrite fusion history

A groundbreaking collaboration between Los Alamos scientists and Duke University has resurrected a nearly forgotten 1938 experiment that may have quietly sparked the age of fusion energy. Arthur Ruhlig, a little-known physicist, first observed signs of deuterium-tritium (DT) fusion nearly a decade before its significance became clear in nuclear science. The modern team not only confirmed the essence of Ruhlig s original findings but also traced how his work may have inspired key Manhattan Project insights.

Hidden DNA-sized crystals in cosmic ice could rewrite water—and life itself

Scientists from UCL and the University of Cambridge have revealed that "space ice"—long thought to be completely disordered—is actually sprinkled with tiny crystals, changing our fundamental understanding of ice in the cosmos. These micro-crystals, just nanometers wide, were identified through simulations and lab experiments, revealing that even the most common ice in space retains a surprising structure. This has major implications not just for astrophysics, but also for theories about the origin of life and advanced materials technology.

CPL Co-hosts an event on National Security and Human Rights

Latest news from Faculty of Law - Tue, 08/07/2025 - 12:42

On Thursday 3rd July CPL co-hosted an event on National Security and Human Rights at the Centro de Estudios Políticos y Constitucionales in Madrid. The event 'In the Name of National Security: The Fragility of Human Rights' was co-hosted by the Centre for Public Law (Dr Kirsty Hughes and Dr Stephanie Palmer) at the University of Cambridge and Universidad Autónoma de Madrid (Professor Susana Sanchez-Ferro). Additional support for the event was generously provided by the Ministerio de Ciencia, Innovación y Universidades, Confinanciado por la Unión Europea . The committee received over 130 responses to the call for papers and a selection of the papers were presented at the event in Madrid. Panels included: National Security and the UK; National Security, Migration and Sanctions; National Security Institutions and Practices; the European Convention on Human Rights and National Security; National Security and Free Speech; and Comparatve Perspectives on National Security. A keynote was given by Professor Iain Cameron, Uppsala University. A selection of the papers will be published in the European Human Rights Law Review in 2026.

They glow without fusion—hidden stars that may finally reveal dark matter

Some of the faintest, coldest stars in the universe may be powered not by fusion—but by the annihilation of dark matter deep within them. These “dark dwarfs” could exist in regions like the galactic center, where dark matter is thickest. Unlike typical stars, they glow without burning hydrogen, and their heat could come from invisible particles crashing into each other inside. If we spot one, especially without lithium (a chemical clue), it could point us straight to the true identity of dark matter.

CULS Head Pro Bono Coordinator recognised in ILBF essay competition

Latest news from Faculty of Law - Mon, 07/07/2025 - 15:46

The Faculty is hugely proud of the wide ranging pro bono activities run by our students under the umbrella of the Cambridge University Law Society (CULS) , led to huge success this year by fourth year undergraduate student Hannah Zia. Hannah studied at Clare College, including a year abroad last year at the University of Auckland. In addition to her role as Head Pro Bono Coordinator for CULS, she is also a competitive rock climber! As part of CULS' pro bono activities, they have collected donated books from all over Cambridge for the International Law Book Facility (IBLF) for many years. The ILBF is a charity providing donated good quality second hard law textbooks to not-for-profit institutions across the world, supporting access to justice and the rule of law. This year Hannah was also the runner up in the highly competitive IBLF law undergraduate essay competition with her article 'What will be the challenges to the rule of law in the next 20 years?' which was highly praised by the judging panel and is available to read on the ILBF site . Responding to her award, Hannah said: "Leading the CULS Pro Bono team this year and working with Jonny, Joy, and Zachary was both demanding and rewarding. I'm particularly proud of the Asylum and Immigration Law Panel I chaired with Grace Brown, Anthony Metzer KC, and Tahlia Dwyer, as well as negotiating with external charities to try and expand pro bono opportunities for students. I’d encourage anyone interested to get involved with CULS and the opportunities on offer!"

Breakthrough battery lets physicists reverse entanglement—and rewrite quantum law

Scientists have finally uncovered a quantum counterpart to Carnot’s famed second law, showing that entanglement—once thought stubbornly irreversible—can be shuffled back and forth without loss if you plug in a clever “entanglement battery.”

Scientists capture real-time birth of ultrafast laser pulses

Scientists have captured the moment a laser "comes to life"—and what they found challenges long-held beliefs. Using a special technique to film laser light in real time, researchers observed how multiple pulses grow and organize themselves into a stable rhythm. Instead of one pulse splitting into many (as previously thought), these pulses are amplified and evolve through five fast-paced phases, from initial chaos to perfect synchronization. This discovery not only deepens our understanding of how lasers work but could also lead to sharper, faster technologies in communication, measurement, and manufacturing.

Defying physics: This rare crystal cools itself using pure magnetism

Deep in Chile’s Atacama Desert, scientists studied a green crystal called atacamite—and discovered it can cool itself dramatically when placed in a magnetic field. Unlike a regular fridge, this effect doesn’t rely on gases or compressors. Instead, it’s tied to the crystal’s unusual inner structure, where tiny magnetic forces get tangled in a kind of “frustration.” When those tangled forces are disrupted by magnetism, the crystal suddenly drops in temperature. It’s a strange, natural trick that could someday help us build greener, more efficient ways to cool things.

Can one vanishing particle shatter string theory — and explain dark matter?

Scientists are on the trail of a mysterious five-particle structure that could challenge one of the biggest theories in physics: string theory. This rare particle—never seen before and predicted not to exist within string theory—might leave behind vanishing tracks in the Large Hadron Collider, like ghostly footprints that suddenly disappear. Spotting it wouldn’t just shake up physics theory—it might also reveal clues to dark matter, the invisible stuff that makes up most of the universe.

A shocking new way to make ammonia, no fossil fuels needed

Australian scientists have discovered a method to produce ammonia—an essential component in fertilizers—using only air and electricity. By mimicking lightning and channeling that energy through a small device, they’ve bypassed the traditional, fossil fuel-heavy method that’s been used for over a century. This breakthrough could lead to cleaner, cheaper fertilizer and even help power the future, offering a potential alternative fuel source for industries like shipping.

Scientists just mapped platinum atoms — and it could transform catalysis forever

A precious metal used everywhere from car exhaust systems to fuel cells, platinum is an incredibly efficient catalyst—but it's costly and carbon-intensive. Now, a serendipitous collaboration between scientists at ETH Zurich and other European institutions has opened a new frontier in understanding and optimizing platinum-based catalysts at the atomic level.

This breakthrough turns old tech into pure gold — No mercury, no cyanide, just light and salt

At Flinders University, scientists have cracked a cleaner and greener way to extract gold—not just from ore, but also from our mounting piles of e-waste. By using a compound normally found in pool disinfectants and a novel polymer that can be reused, the method avoids toxic chemicals like mercury and cyanide. It even works on trace gold in scientific waste. Tested on everything from circuit boards to mixed-metal ores, the approach offers a promising solution to both the global gold rush and the growing e-waste crisis. The technique could be a game-changer for artisanal miners and recyclers, helping recover valuable metals while protecting people and the planet.

Graphene just unlocked “impossible” quantum currents without magnets

Researchers have achieved a major breakthrough by generating quantum spin currents in graphene—without relying on bulky magnetic fields. By pairing graphene with a magnetic material, they unlocked a powerful quantum effect that allows electrons to carry information through their spins alone. This discovery could spark a new era of faster, more energy-efficient spin-based technologies.

Self-lighting chip uses quantum tunneling to spot a trillionth of a gram

Imagine detecting a single trillionth of a gram of a molecule—like an amino acid—using just electricity and a chip smaller than your fingernail. That’s the power of a new quantum-enabled biosensor developed at EPFL. Ditching bulky lasers, it taps into the strange world of quantum tunneling, where electrons sneak through barriers and release light in the process. This self-illuminating sensor uses a gold nanostructure to both generate and sense light, making it incredibly compact, ultra-sensitive, and perfect for rapid diagnostics or environmental testing. With its cutting-edge design, it might just revolutionize how and where we detect disease, pollutants, and more.