skip to content

Energy

Interdisciplinary Research Centre
 

Scientists tune the entanglement structure in an array of qubits

A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.

How light can vaporize water without the need for heat

Researchers discovered that light can cause evaporation of water from a surface without the need for heat. This 'photomolecular effect' could be important for understanding climate change and for improving some industrial processes.

Positive perceptions of solar projects

A new survey has found that for residents living within three miles of a large-scale solar development, positive attitudes outnumbered negative attitudes by almost a 3-to-1 margin. Researchers surveyed almost 1,000 residents living near solar projects.

Why can't robots outrun animals?

Robotics engineers have worked for decades and invested many millions of research dollars in attempts to create a robot that can walk or run as well as an animal. And yet, it remains the case that many animals are capable of feats that would be impossible for robots that exist today.

Rubber-like stretchable energy storage device fabricated with laser precision

Scientists use laser ablation technology to develop a deformable micro-supercapacitor.

Pattern formation in the nano-cosmos

A new model extends the theory of elastic phase separation towards nanoscopic structures. Such patterns are frequent in biological systems and also used in nano-engineering to create structural color. With their new insights, the scientists can predict the length scale of nanoscopic patterns and thus control them during production.

Holographic displays offer a glimpse into an immersive future

Researchers have invented a new optical element that brings us one step closer to mixing the real and virtual worlds in an ordinary pair of eyeglasses using high-definition 3D holographic images.

This salt battery harvests osmotic energy where the river meets the sea

Estuaries -- where freshwater rivers meet the salty sea -- are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, 'blue' osmotic energy. Researchers report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.

Biophysics: Testing how well biomarkers work

Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.

Researchers show it's possible to teach old magnetic cilia new tricks

Magnetic cilia -- artificial hairs whose movement is powered by embedded magnetic particles -- have been around for a while, and are of interest for applications in soft robotics, transporting objects and mixing liquids. However, existing magnetic cilia move in a fixed way. Researchers have now demonstrated a technique for creating magnetic cilia that can be 'reprogrammed,' changing their magnetic properties at room temperature to change the motion of the cilia as needed.

High-resolution lidar sees birth zone of cloud droplets

Scientists demonstrated the first-ever remote observations of the fine-scale structure at the base of clouds. The results show that the air-cloud interface is a transition zone where aerosol particles suspended in Earth's atmosphere give rise to the droplets that ultimately form clouds. The research will enable scientists to gain insight into how changes in atmospheric aerosol levels could affect clouds and climate.

A chemical mystery solved -- the reaction explaining large carbon sinks

A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Opening up the potential of thin-film electronics for flexible chip design

The mass production of conventional silicon chips relies on a successful business model with large 'semiconductor fabrication plants' or 'foundries'. New research by shows that this 'foundry' model can also be applied to the field of flexible, thin-film electronics.

Making diamonds at ambient pressure

Researchers have grown diamonds under conditions of 1 atmosphere pressure and at 1025 degrees Celsius using a liquid metal alloy composed of gallium, iron, nickel, and silicon, thus breaking the existing paradigm. The discovery of this new growth method opens many possibilities for further basic science studies and for scaling up the growth of diamonds in new ways.

A simple 'twist' improves the engine of clean fuel generation

Researchers have found a way to super-charge the 'engine' of sustainable fuel generation -- by giving the materials a little twist. The researchers are developing low-cost light-harvesting semiconductors that power devices for converting water into clean hydrogen fuel, using just the power of the sun. These semiconducting materials, known as copper oxides, are cheap, abundant and non-toxic, but their performance does not come close to silicon, which dominates the semiconductor market.

Condensed matter physics: Novel one-dimensional superconductor

In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

A novel universal light-based technique to control valley polarization in bulk materials

Scientists report a new method that achieves for the first time valley polarization in centrosymmetric bulk materials in a non-material-specific way. This 'universal technique' may have major applications linked to the control and analysis of different properties for 2D and 3D materials, which can in turn enable the advancement of cutting-edge fields such us information processing and quantum computing.

A simple ‘twist’ improves the engine of clean fuel generation

The researchers, led by the University of Cambridge, are developing low-cost light-harvesting semiconductors that power devices for converting water into clean hydrogen fuel, using just the power of the sun. These semiconducting materials, known as copper oxides, are cheap, abundant and non-toxic, but their performance does not come close to silicon, which dominates the semiconductor market.

However, the researchers found that by growing the copper oxide crystals in a specific orientation so that electric charges move through the crystals at a diagonal, the charges move much faster and further, greatly improving performance. Tests of a copper oxide light harvester, or photocathode, based on this fabrication technique showed a 70% improvement over existing state-of-the-art oxide photocathodes, while also showing greatly improved stability.

The researchers say their results, reported in the journal Nature, show how low-cost materials could be fine-tuned to power the transition away from fossil fuels and toward clean, sustainable fuels that can be stored and used with existing energy infrastructure.

Copper (I) oxide, or cuprous oxide, has been touted as a cheap potential replacement for silicon for years, since it is reasonably effective at capturing sunlight and converting it into electric charge. However, much of that charge tends to get lost, limiting the material’s performance.

“Like other oxide semiconductors, cuprous oxide has its intrinsic challenges,” said co-first author Dr Linfeng Pan from Cambridge’s Department of Chemical Engineering and Biotechnology. “One of those challenges is the mismatch between how deep light is absorbed and how far the charges travel within the material, so most of the oxide below the top layer of material is essentially dead space.”

“For most solar cell materials, it’s defects on the surface of the material that cause a reduction in performance, but with these oxide materials, it’s the other way round: the surface is largely fine, but something about the bulk leads to losses,” said Professor Sam Stranks, who led the research. “This means the way the crystals are grown is vital to their performance.”

To develop cuprous oxides to the point where they can be a credible contender to established photovoltaic materials, they need to be optimised so they can efficiently generate and move electric charges – made of an electron and a positively-charged electron ‘hole’ – when sunlight hits them.

One potential optimisation approach is single-crystal thin films – very thin slices of material with a highly-ordered crystal structure, which are often used in electronics. However, making these films is normally a complex and time-consuming process.

Using thin film deposition techniques, the researchers were able to grow high-quality cuprous oxide films at ambient pressure and room temperature. By precisely controlling growth and flow rates in the chamber, they were able to ‘shift’ the crystals into a particular orientation. Then, using high temporal resolution spectroscopic techniques, they were able to observe how the orientation of the crystals affected how efficiently electric charges moved through the material.

“These crystals are basically cubes, and we found that when the electrons move through the cube at a body diagonal, rather than along the face or edge of the cube, they move an order of magnitude further,” said Pan. “The further the electrons move, the better the performance.”

“Something about that diagonal direction in these materials is magic,” said Stranks. “We need to carry out further work to fully understand why and optimise it further, but it has so far resulted in a huge jump in performance.” Tests of a cuprous oxide photocathode made using this technique showed an increase in performance of more than 70% over existing state-of-the-art electrodeposited oxide photocathodes.

“In addition to the improved performance, we found that the orientation makes the films much more stable, but factors beyond the bulk properties may be at play,” said Pan.

The researchers say that much more research and development is still needed, but this and related families of materials could have a vital role in the energy transition.

“There’s still a long way to go, but we’re on an exciting trajectory,” said Stranks. “There’s a lot of interesting science to come from these materials, and it’s interesting for me to connect the physics of these materials with their growth, how they form, and ultimately how they perform.”

The research was a collaboration with École Polytechnique Fédérale de Lausanne, Nankai University and Uppsala University. The research was supported in part by the European Research Council, the Swiss National Science Foundation, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Sam Stranks is Professor of Optoelectronics in the Department of Chemical Engineering and Biotechnology, and a Fellow of Clare College, Cambridge.

 

Reference:
Linfeng Pan, Linjie Dai et al. ‘High carrier mobility along the [111] orientation in Cu2O photoelectrodes.’ Nature (2024). DOI: 10.1038/s41586-024-07273-8

For more information on energy-related research in Cambridge, please visit the Energy IRC, which brings together Cambridge’s research knowledge and expertise, in collaboration with global partners, to create solutions for a sustainable and resilient energy landscape for generations to come. 

Researchers have found a way to super-charge the ‘engine’ of sustainable fuel generation – by giving the materials a little twist.

orange via Getty ImagesAbstract orange swirls


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

A simple ‘twist’ improves the engine of clean fuel generation

Cambridge Energy News - Wed, 24/04/2024 - 15:31

The researchers, led by the University of Cambridge, are developing low-cost light-harvesting semiconductors that power devices for converting water into clean hydrogen fuel, using just the power of the sun. These semiconducting materials, known as copper oxides, are cheap, abundant and non-toxic, but their performance does not come close to silicon, which dominates the semiconductor market.

However, the researchers found that by growing the copper oxide crystals in a specific orientation so that electric charges move through the crystals at a diagonal, the charges move much faster and further, greatly improving performance. Tests of a copper oxide light harvester, or photocathode, based on this fabrication technique showed a 70% improvement over existing state-of-the-art oxide photocathodes, while also showing greatly improved stability.

The researchers say their results, reported in the journal Nature, show how low-cost materials could be fine-tuned to power the transition away from fossil fuels and toward clean, sustainable fuels that can be stored and used with existing energy infrastructure.

Copper (I) oxide, or cuprous oxide, has been touted as a cheap potential replacement for silicon for years, since it is reasonably effective at capturing sunlight and converting it into electric charge. However, much of that charge tends to get lost, limiting the material’s performance.

“Like other oxide semiconductors, cuprous oxide has its intrinsic challenges,” said co-first author Dr Linfeng Pan from Cambridge’s Department of Chemical Engineering and Biotechnology. “One of those challenges is the mismatch between how deep light is absorbed and how far the charges travel within the material, so most of the oxide below the top layer of material is essentially dead space.”

“For most solar cell materials, it’s defects on the surface of the material that cause a reduction in performance, but with these oxide materials, it’s the other way round: the surface is largely fine, but something about the bulk leads to losses,” said Professor Sam Stranks, who led the research. “This means the way the crystals are grown is vital to their performance.”

To develop cuprous oxides to the point where they can be a credible contender to established photovoltaic materials, they need to be optimised so they can efficiently generate and move electric charges – made of an electron and a positively-charged electron ‘hole’ – when sunlight hits them.

One potential optimisation approach is single-crystal thin films – very thin slices of material with a highly-ordered crystal structure, which are often used in electronics. However, making these films is normally a complex and time-consuming process.

Using thin film deposition techniques, the researchers were able to grow high-quality cuprous oxide films at ambient pressure and room temperature. By precisely controlling growth and flow rates in the chamber, they were able to ‘shift’ the crystals into a particular orientation. Then, using high temporal resolution spectroscopic techniques, they were able to observe how the orientation of the crystals affected how efficiently electric charges moved through the material.

“These crystals are basically cubes, and we found that when the electrons move through the cube at a body diagonal, rather than along the face or edge of the cube, they move an order of magnitude further,” said Pan. “The further the electrons move, the better the performance.”

“Something about that diagonal direction in these materials is magic,” said Stranks. “We need to carry out further work to fully understand why and optimise it further, but it has so far resulted in a huge jump in performance.” Tests of a cuprous oxide photocathode made using this technique showed an increase in performance of more than 70% over existing state-of-the-art electrodeposited oxide photocathodes.

“In addition to the improved performance, we found that the orientation makes the films much more stable, but factors beyond the bulk properties may be at play,” said Pan.

The researchers say that much more research and development is still needed, but this and related families of materials could have a vital role in the energy transition.

“There’s still a long way to go, but we’re on an exciting trajectory,” said Stranks. “There’s a lot of interesting science to come from these materials, and it’s interesting for me to connect the physics of these materials with their growth, how they form, and ultimately how they perform.”

The research was a collaboration with École Polytechnique Fédérale de Lausanne, Nankai University and Uppsala University. The research was supported in part by the European Research Council, the Swiss National Science Foundation, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Sam Stranks is Professor of Optoelectronics in the Department of Chemical Engineering and Biotechnology, and a Fellow of Clare College, Cambridge.

 

Reference:
Linfeng Pan, Linjie Dai et al. ‘High carrier mobility along the [111] orientation in Cu2O photoelectrodes.’ Nature (2024). DOI: 10.1038/s41586-024-07273-8

For more information on energy-related research in Cambridge, please visit the Energy IRC, which brings together Cambridge’s research knowledge and expertise, in collaboration with global partners, to create solutions for a sustainable and resilient energy landscape for generations to come. 

Researchers have found a way to super-charge the ‘engine’ of sustainable fuel generation – by giving the materials a little twist.

orange via Getty ImagesAbstract orange swirls


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Critical minerals recovery from electronic waste

A nontoxic separation process recovers critical minerals from electronic scrap waste.