skip to content

Energy

Interdisciplinary Research Centre
 

This 250-year-old equation just got a quantum makeover

A team of international physicists has brought Bayes’ centuries-old probability rule into the quantum world. By applying the “principle of minimum change” — updating beliefs as little as possible while remaining consistent with new data — they derived a quantum version of Bayes’ rule from first principles. Their work connects quantum fidelity (a measure of similarity between quantum states) to classical probability reasoning, validating a mathematical concept known as the Petz map.

Decades-old photosynthesis mystery finally solved

Scientists from the Indian Institute of Science (IISc) and Caltech have finally solved a decades-old mystery about how photosynthesis really begins. They discovered why energy inside plants flows down only one of two possible routes — a design that lets nature move sunlight with astonishing precision. Using advanced computer simulations, the researchers showed that one branch has a much higher energy barrier, blocking electrons from moving freely.

New simulation reveals how Earth’s magnetic field first sparked to life

Geophysicists have modeled how Earth’s magnetic field could form even when its core was fully liquid. By removing the effects of viscosity in their simulation, they revealed a self-sustaining dynamo that mirrors today’s mechanism. The results illuminate Earth’s early history, life’s origins, and the magnetism of other planets. Plus, it could help forecast future changes to our planet’s protective shield.

Quantum simulations that once needed supercomputers now run on laptops

A team at the University at Buffalo has made it possible to simulate complex quantum systems without needing a supercomputer. By expanding the truncated Wigner approximation, they’ve created an accessible, efficient way to model real-world quantum behavior. Their method translates dense equations into a ready-to-use format that runs on ordinary computers. It could transform how physicists explore quantum phenomena.

Scientists create a magnetic lantern that moves like it’s alive

A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a magnetic layer, they achieved remote control of the shape-shifting process, allowing the lanterns to act as grippers, filters, or expandable mechanisms.

Scientists create a paper-thin light that glows like the sun

Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the researchers achieved light quality remarkably close to natural sunlight, improving color accuracy and reducing eye strain.

USC engineers just made light smarter with “optical thermodynamics”

USC engineers have developed an optical system that routes light autonomously using thermodynamic principles. Rather than relying on switches, light organizes itself much like particles in a gas reaching equilibrium. The discovery could simplify and speed up optical communications and computing. It reimagines chaotic optical behavior as a tool for design rather than a limitation.

Solar-powered method lights the way to a ‘de-fossilised’ chemical industry

Hundreds of thousands of chemicals are manufactured by the chemical industry, which transforms raw materials – usually fossil fuels – into useful end products. Due to its size and its use of fossil fuel feedstocks, the chemical industry is responsible for roughly 6% of global carbon emissions.

But researchers, led by the University of Cambridge, are developing new methods that could one day lead to the ‘de-fossilisation’ of this important sector.

They have developed a hybrid device that combines light-harvesting organic polymers with bacterial enzymes to convert sunlight, water and carbon dioxide into formate, a fuel that can drive further chemical transformations.

Their ‘semi-artificial leaf’ mimics photosynthesis: the process plants use to convert sunlight into energy, and does not require any external power source. Unlike earlier prototypes, which often relied on toxic or unstable light absorbers, the new biohybrid design avoids toxic semiconductors, lasts longer, and can run without additional chemicals that previously hindered efficiency.

In tests, the researchers used sunlight to convert carbon dioxide into formate and then used it directly in a ‘domino’ chemical reaction to produce an important type of compound used in pharmaceuticals, with high yield and purity.

Their results, reported in the journal Joule, mark the first time that organic semiconductors have been used as the light-harvesting component in this type of biohybrid device, opening the door to a new family of sustainable artificial leaves.

The chemical industry is central to the world economy, producing products from pharmaceuticals and fertilisers, to plastics, paints, electronics, cleaning products, and toiletries.

“If we’re going to build a circular, sustainable economy, the chemical industry is a big, complex problem that we must address,” said Professor Erwin Reisner from Cambridge’s Yusuf Hamied Department of Chemistry, who led the research. “We’ve got to come up with ways to de-fossilise this important sector, which produces so many important products we all need. It’s a huge opportunity if we can get it right.”

Reisner’s research group specialises in the development of artificial leaves, which turn sunlight into carbon-based fuels and chemicals without relying on fossil fuels. But many of their earlier designs depend on synthetic catalysts or inorganic semiconductors, which either degrade quickly, waste much of the solar spectrum, or contain toxic elements such as lead.

“If we can remove the toxic components and start using organic elements, we end up with a clean chemical reaction and a single end product, without any unwanted side reactions,” said co-first author Dr Celine Yeung, who completed the research as part of her PhD work in Reisner’s lab. “This device combines the best of both worlds – organic semiconductors are tuneable and non-toxic, while biocatalysts are highly selective and efficient.”

The new device integrates organic semiconductors with enzymes from sulphate-reducing bacteria, splitting water into hydrogen and oxygen or converting carbon dioxide into formate.

The researchers have also addressed a long-standing challenge: most systems require chemical additives, known as buffers, to keep the enzymes running. These can break down quickly and limit stability. By embedding a helper enzyme, carbonic anhydrase, into a porous titania structure, the researchers enabled the system to work in a simple bicarbonate solution — similar to sparkling water — without unsustainable additives.

“It’s like a big puzzle,” said co-first author Dr Yongpeng Liu, a postdoctoral researcher in Reisner’s lab. “We have all these different components that we’ve been trying to bring together for a single purpose. It took us a long time to figure out how this specific enzyme is immobilised on an electrode, but we’re now starting to see the fruits from these efforts.”

“By really studying how the enzyme works, we were able to precisely design the materials that make up the different layers of our sandwich-like device,” said Yeung. “This design made the parts work together more effectively, from the tiny nanoscale up to the full artificial leaf.”

Tests showed the artificial leaf produced high currents and achieved near-perfect efficiency in directing electrons into fuel-making reactions. The device successfully ran for over 24 hours: more than twice as long as previous designs.

The researchers are hoping to further develop their designs to extend the lifespan of the device and adapt it so it can produce different types of chemical products.

“We’ve shown it’s possible to create solar-powered devices that are not only efficient and durable but also free from toxic or unsustainable components,” said Reisner. “This could be a fundamental platform for producing green fuels and chemicals in future – it’s a real opportunity to do some exciting and important chemistry.”

The research was supported in part by the Singapore Agency for Science, Technology and Research (A*STAR), the European Research Council, the Swiss National Science Foundation, the Royal Academy of Engineering, and UK Research and Innovation (UKRI). Erwin Reisner is a Fellow of St John’s College, Cambridge. Celine Yeung is a Member of Downing College, Cambridge.
 

Reference:
Celine Wing See Yeung et al. ‘Semi-artificial leaf interfacing organic semiconductors and enzymes for solar chemical synthesis.’ Joule (2025). DOI: 10.1016/j.joule.2025.102165

Researchers have demonstrated a new and sustainable way to make the chemicals that are the basis of thousands of products – from plastics to cosmetics – we use every day.

Celine YeungSemi-artificial organic photocathode


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Solar-powered method lights the way to a ‘de-fossilised’ chemical industry

Cambridge Energy News - Fri, 10/10/2025 - 16:05

Hundreds of thousands of chemicals are manufactured by the chemical industry, which transforms raw materials – usually fossil fuels – into useful end products. Due to its size and its use of fossil fuel feedstocks, the chemical industry is responsible for roughly 6% of global carbon emissions.

But researchers, led by the University of Cambridge, are developing new methods that could one day lead to the ‘de-fossilisation’ of this important sector.

They have developed a hybrid device that combines light-harvesting organic polymers with bacterial enzymes to convert sunlight, water and carbon dioxide into formate, a fuel that can drive further chemical transformations.

Their ‘semi-artificial leaf’ mimics photosynthesis: the process plants use to convert sunlight into energy, and does not require any external power source. Unlike earlier prototypes, which often relied on toxic or unstable light absorbers, the new biohybrid design avoids toxic semiconductors, lasts longer, and can run without additional chemicals that previously hindered efficiency.

In tests, the researchers used sunlight to convert carbon dioxide into formate and then used it directly in a ‘domino’ chemical reaction to produce an important type of compound used in pharmaceuticals, with high yield and purity.

Their results, reported in the journal Joule, mark the first time that organic semiconductors have been used as the light-harvesting component in this type of biohybrid device, opening the door to a new family of sustainable artificial leaves.

The chemical industry is central to the world economy, producing products from pharmaceuticals and fertilisers, to plastics, paints, electronics, cleaning products, and toiletries.

“If we’re going to build a circular, sustainable economy, the chemical industry is a big, complex problem that we must address,” said Professor Erwin Reisner from Cambridge’s Yusuf Hamied Department of Chemistry, who led the research. “We’ve got to come up with ways to de-fossilise this important sector, which produces so many important products we all need. It’s a huge opportunity if we can get it right.”

Reisner’s research group specialises in the development of artificial leaves, which turn sunlight into carbon-based fuels and chemicals without relying on fossil fuels. But many of their earlier designs depend on synthetic catalysts or inorganic semiconductors, which either degrade quickly, waste much of the solar spectrum, or contain toxic elements such as lead.

“If we can remove the toxic components and start using organic elements, we end up with a clean chemical reaction and a single end product, without any unwanted side reactions,” said co-first author Dr Celine Yeung, who completed the research as part of her PhD work in Reisner’s lab. “This device combines the best of both worlds – organic semiconductors are tuneable and non-toxic, while biocatalysts are highly selective and efficient.”

The new device integrates organic semiconductors with enzymes from sulphate-reducing bacteria, splitting water into hydrogen and oxygen or converting carbon dioxide into formate.

The researchers have also addressed a long-standing challenge: most systems require chemical additives, known as buffers, to keep the enzymes running. These can break down quickly and limit stability. By embedding a helper enzyme, carbonic anhydrase, into a porous titania structure, the researchers enabled the system to work in a simple bicarbonate solution — similar to sparkling water — without unsustainable additives.

“It’s like a big puzzle,” said co-first author Dr Yongpeng Liu, a postdoctoral researcher in Reisner’s lab. “We have all these different components that we’ve been trying to bring together for a single purpose. It took us a long time to figure out how this specific enzyme is immobilised on an electrode, but we’re now starting to see the fruits from these efforts.”

“By really studying how the enzyme works, we were able to precisely design the materials that make up the different layers of our sandwich-like device,” said Yeung. “This design made the parts work together more effectively, from the tiny nanoscale up to the full artificial leaf.”

Tests showed the artificial leaf produced high currents and achieved near-perfect efficiency in directing electrons into fuel-making reactions. The device successfully ran for over 24 hours: more than twice as long as previous designs.

The researchers are hoping to further develop their designs to extend the lifespan of the device and adapt it so it can produce different types of chemical products.

“We’ve shown it’s possible to create solar-powered devices that are not only efficient and durable but also free from toxic or unsustainable components,” said Reisner. “This could be a fundamental platform for producing green fuels and chemicals in future – it’s a real opportunity to do some exciting and important chemistry.”

The research was supported in part by the Singapore Agency for Science, Technology and Research (A*STAR), the European Research Council, the Swiss National Science Foundation, the Royal Academy of Engineering, and UK Research and Innovation (UKRI). Erwin Reisner is a Fellow of St John’s College, Cambridge. Celine Yeung is a Member of Downing College, Cambridge.
 

Reference:
Celine Wing See Yeung et al. ‘Semi-artificial leaf interfacing organic semiconductors and enzymes for solar chemical synthesis.’ Joule (2025). DOI: 10.1016/j.joule.2025.102165

Researchers have demonstrated a new and sustainable way to make the chemicals that are the basis of thousands of products – from plastics to cosmetics – we use every day.

Celine YeungSemi-artificial organic photocathode


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Scientists grow metal instead of 3D printing it — and it’s 20x stronger

Scientists at EPFL have reimagined 3D printing by turning simple hydrogels into tough metals and ceramics. Their process allows multiple infusions of metal salts that form dense, high-strength structures without the porosity of earlier methods. Early results show materials 20 times stronger with much less shrinkage. The breakthrough could lead to efficient production of complex energy and biomedical devices.

Scientists unlock the quantum magic hidden in diamonds

Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency at room temperature. The innovation could make practical quantum sensors and secure communication devices much closer to reality.

A strange quantum metal just rewrote the rules of electricity

In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming complex patterns. These reversals amplify the metal’s electrical asymmetry, creating a diode-like effect up to 100 times stronger than expected. The team’s theoretical explanation finally clarifies a mysterious phenomenon first observed in 2020, revealing that quantum geometry and spontaneous symmetry breaking are key to this strange behavior.

Physicists just built a quantum lie detector. It works

An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show quantum computers are not just bigger, but more authentically quantum. This opens the door to more secure communication and stronger quantum algorithms.

Scientists accidentally create a tiny “rainbow chip” that could supercharge the internet

Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean messy laser light, the team achieved lab-grade precision on a small silicon device. This could drastically improve data center efficiency and fuel innovations in sensing, quantum tech, and LiDAR.

When sunshine became cheaper than coal

Solar energy is now the cheapest source of power worldwide, driving a massive shift toward renewables. Falling battery prices and innovations in solar materials are making clean energy more reliable than ever. Yet, grid congestion and integration remain key challenges. Experts say smart grids and sustained policy support are crucial to accelerate the transition.

Cambridge alumnus awarded 2025 Nobel Prize in Physics

Latest news from Department of Physics - Tue, 07/10/2025 - 11:51

Clarke, who is Professor Emeritus of the Graduate School at the University of California at Berkeley, completed both his undergraduate and PhD studies at Cambridge. He was born in Cambridge and attended the Perse School on an academic scholarship before coming to Christ’s College as an undergraduate to read Natural Sciences.

Clarke moved to Darwin College for his PhD, which he completed in 1968 at the Cavendish Laboratory. His research is based on the theory, design and applications of superconducting quantum interference devices (SQUIDs), which are ultrasensitive detectors of magnetic flux.

“John Clarke, together with Michel Devoret and John Martinis, pushed the door open for today’s quantum technologies based on superconducting qubits, putting fundamental quantum phenomena at work in real devices,” said Professor Mete Atature, Head of the Cavendish Laboratory. “Brian Josephson – another Cavendish Nobel Laureate – was first to propose the concept of a new quantum phase arising from tunnelling between two superconductors. John Clarke's PhD work in the Cavendish Laboratory demonstrated the operational principle of what we call a superconductor-normal-superconductor (SNS) Josephson Junction - essentially the heart of all superconducting qubits today. Devoret and Martinis spearheaded the translation of this fundamental quantum physics concept into what superconducting quantum computing is today. I’m of course thrilled with today’s well-deserved announcement.”

A major question in physics is the maximum size of a system that can demonstrate quantum mechanical effects. Clarke, Devoret and Martinis conducted experiments with an electrical circuit in which they demonstrated both quantum mechanical tunnelling and quantised energy levels in a system big enough to be held in the hand.

Quantum mechanics allows a particle to move straight through a barrier, using a process called tunnelling. As soon as large numbers of particles are involved, quantum mechanical effects usually become insignificant. The laureates’ experiments demonstrated that quantum mechanical properties can be made concrete on a macroscopic scale.

In 1984 and 1985, Clarke, Devoret and Martinis conducted a series of experiments with an electronic circuit built of superconductors, components that can conduct a current with no electrical resistance. In the circuit, the superconducting components were separated by a thin layer of non-conductive material, a setup known as a Josephson junction. By refining and measuring all the various properties of their circuit, they were able to control and explore the phenomena that arose when they passed a current through it. Together, the charged particles moving through the superconductor comprised a system that behaved as if they were a single particle that filled the entire circuit.

This macroscopic particle-like system is initially in a state in which current flows without any voltage. The system is trapped in this state, as if behind a barrier that it cannot cross. In the experiment the system shows its quantum character by managing to escape the zero-voltage state through tunnelling. The system’s changed state is detected through the appearance of a voltage.

The laureates could also demonstrate that the system behaves in the manner predicted by quantum mechanics – it is quantised, meaning that it only absorbs or emits specific amounts of energy.

Professor Deborah Prentice, Vice-Chancellor of the University of Cambridge, said: “Congratulations to Cambridge alumnus Professor Clarke on being jointly awarded this year’s Nobel Prize in Physics for his research into quantum mechanical tunnelling. Not only did he grow up in this incredible city, but he studied from his undergraduate degree through to his PhD here.

“Professor Clarke joins 125 other noteworthy Cambridge alumni and researchers who have been awarded Nobel Prizes, highlighting our University’s remarkable impact within the research and education sectors.”

Clarke has continued his active affiliation with Cambridge over the years, returning several times, including 1972 when he was elected to a Fellowship at Christ’s, 1989 when he was a Visiting Fellow at Clare Hall, and 1998 when he was elected a By-Fellow of Churchill College. He was awarded the ScD from the University in 2003, and was elected an Honorary Fellow of Darwin College in 2023.

John Clarke is the 126th affiliate of the University of Cambridge to be awarded the Nobel Prize.

University of Cambridge alumnus Professor John Clarke has been awarded the 2025 Nobel Prize in Physics, jointly with Michel H. Devoret and John M. Martinis, for their work revealing quantum physics in action.

Ill. Niklas Elmehed © Nobel Prize OutreachIllustration of John Clarke


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

The Law and Practice of Human Rights

Latest news from Faculty of Law - Mon, 06/10/2025 - 16:56

Lexis Nexis has published The Law and Practice of Human Rights edited by Alistair Mills , David Blundell KC, and Miranda Butler. The Law and Practice of Human Rights provides a thorough yet usable guide to human rights law and practice. Written by a team of expert practitioners at Landmark Chambers, the book examines the legal framework established under the European Convention of Human Rights, while also highlighting the enduring relevance of the common law in protecting rights and liberties. Providing in-depth analysis of both substantive and procedural aspects of the law, detailed and practical chapters describe the content of applicable protections, the domestic application of the Human Rights Act 1998, and the steps involved in taking a case to Strasbourg. Targeted at practitioners working in fields that interact with human rights, and those who wish to understand the current state of human rights law in the UK, this book aims to be an important and up-to-date tool for all those involved in this contentious but essential area of practice. For more information about this book, please refer to the Lexis Nexis website . For information about publications by Alistair Mills, please refer to his Faculty profile .

Black holes might hold the key to a 60-year cosmic mystery

Scientists may have finally uncovered the mystery behind ultra-high-energy cosmic rays — the most powerful particles known in the universe. A team from NTNU suggests that colossal winds from supermassive black holes could be accelerating these particles to unimaginable speeds. These winds, moving at half the speed of light, might not only shape entire galaxies but also fling atomic nuclei across the cosmos with incredible energy.

Lighting the way for electric vehicles by using streetlamps as chargers

A Penn State research team found that streetlights could double as affordable EV charging stations. After installing 23 units in Kansas City, they discovered these chargers were faster, cheaper, and more eco-friendly than traditional stations. Their AI-based framework also prioritized equity and scalability, making it adaptable for cities across the country.

Scientists finally found the “dark matter” of electronics

Scientists at OIST have, for the first time, directly tracked the elusive “dark excitons” inside atomically thin materials. These quantum particles could revolutionize information technology, as they are more stable and resistant to environmental interference than current qubits.